
Big parts of this script was taken from the documentation of the Hamburg HPC Competence Center
(HHCC). Please visit their website for more details on the Use of the Command Line Interface or
about Using Shell Scripts.

You will learn to how to use Environment Modules, a widely used system for handling
different software environments (basic level)
You will learn to use the workload manager SLURM to allocate HPC resources (e.g. CPUs)
and to submit a batch job (basic level)
You will learn how a simple jobscript looks like and how to submit it (basic to intermediate
level)

Environment Modules are a tool for managing environment variables of the shell. Modules can be
loaded and unloaded dynamically and atomically, in an clean fashion. Details can be found on the
official website.

The workload manager used on the Phoenix-Cluster is SLURM (Simple Linux Utility for Resource
Management). SLURM a widely used open source workload managers for large and small Linux
clusters which is controlled via a CLI (Command Line Interface). Details can be found in the official
documentation.

Queuing-System (SLURM)
and Jobfiles
Important info:

Description:

General Information

Environment Modules
Introduction:

https://www.hhcc.uni-hamburg.de/learning-hpc.html
https://www.hhcc.uni-hamburg.de/learning-hpc.html
https://www.hhcc.uni-hamburg.de/learning-hpc/getting-started-with-hpc-clusters-b/getting-started-with-hpc-clusters-b-y-selecting-the-software-environment-b.html
https://www.hhcc.uni-hamburg.de/learning-hpc/getting-started-with-hpc-clusters-b/getting-started-with-hpc-clusters-b-y-using-shell-scripts-b.html
http://modules.sourceforge.net//
https://slurm.schedmd.com/
https://slurm.schedmd.com/

The module load command extends variables containing search paths (e.g. PATH or MANPATH). The
module unload command is the corresponding inverse operation, it removes entries from search
paths. By extending search paths software is made callable. Effectively software can be provided
through Modules. An advantage over defining environment variables directly in the shell is that
Modules allow to undo changes of environment variables. The idea of introducing Modules is to be
able to define software environments in a modular way. In the context of HPC, Modules make it
easy to switch compilers or libraries, or to choose between different versions of an application
software package.

Names of Modules have the format program/version , just program or even a slightly more nested
path description. Modules can be loaded (and always be unloaded) without specifying a version. If
the version is not specified the default version will be loaded. The default version is either explicitly
defined (and will be marked in the output of module avail) or module will load the version that
appears to be the latest one. Because defaults can change version s should always be given if
reproducibility is required.

Modules can have dependences, i.e. a Module can enforce that other Modules that it depends on
must be loaded before the Module itself can be loaded. Module can be conflicting, i.e. these
modules must not be loaded at the same time (e.g. two version of a compiler). A conflicting Module
must be unloaded before the Module it conflicts with can be loaded.

The name Modules suggest that Modules can be picked and combined in a modular fashion. For
Modules providing application packages this is true (up to possible dependences and conflicts
described above), i.e. it is possible to chose any combination of application software.

However, today, environments for building software are not modular anymore. In particular, it is no
longer guaranteed that a library that was built with one compiler can be used with code generated
by a different compiler. Hence, the corresponding Modules cannot be modular either. A popular
way to handle this situation is to append compiler information to the version information of library
Modules. Firstly, this leads to long names and secondly, to very many Modules that are hard to
overlook. A more modern way is to build up toolchains with Modules. For example, in such a
toolchain only compiler Modules are available at the beginning. Once a compiler Module is loaded,
MPI libraries (the next level of tools) become available and after that all other Modules (that were
built with that chain).

Important Module commands are:

list Modules currently loaded module list

Naming:

Dependences and conflicts:

Caveats:

Important commands:

list available Modules module avail

load a Module module load program[/version]

unload a Module module unload program

switch a Module (e.g. compiler version) module switch program program/version

add or remove a directory/path to the Module search path
(e.g. by an own Module directory)

module [un]use [–append] path

Modules are self-documented:

show the actions of a Module module display program/version

short description of [one or] all Modules module whatis [program/version]

longer help text on a Module module help program/version

help on module itself module help

There are three key functions of SLURM described on the SLURM website:

“… First, it allocates exclusive and/or non-exclusive access to resources (compute nodes) to users
for some duration of time so they can perform work. Second, it provides a framework for starting,
executing, and monitoring work (normally a parallel job) on the set of allocated nodes. Finally, it
arbitrates contention for resources by managing a queue of pending work. …”

SLURM’s default scheduling is based on a FIFO-queue, which is typically enhanced with the
Multifactor Priority Plugin to achieve a very versatile facility for ordering the queue of jobs waiting
to be scheduled. In contrast to other workload managers SLURM does not use several job queues.
Cluster nodes in a SLURM configuration can be assigned to multiple partitions by the cluster
administrators instead. This enables the same functionality.

A compute center will seek to configure SLURM in a way that resource utilization and throughput
are maximized, waiting times and turnaround times are minimized, and all users are treated fairly.

The basic functionality of SLURM can be divided into three areas:

Job submission and cancellation
Monitoring job and system information
Retrieving accounting information

Self-documentation:

Basics of SLURM
Introduction:

There are three commands for handling job submissions:

sbatch
submits a batch job script to SLURM’s job queue for (later) execution. The batch
script may be given to sbatch by a file name on the command line or can be read
from stdin. Resources needed by the job may be specified via command line options
and/or directly in the job script. A job script may contain several job steps to perform
several parallel tasks within the same script. Job steps themselves may be run
sequentially or in parallel. SLURM regards the script as the first job step.

salloc
allocates a set of nodes, typically for interactive use. Resources needed may be
specified via command line options.

srun
usually runs a command on nodes previously allocated via sbatch or salloc. Each
invocation of srun within a job script corresponds to a job step and launches parallel
tasks across the allocated resources. A task is represented e.g. by a program,
command, or script. If srun is not invoked within an allocation it will via command
line options first create a resource allocation in which to run the parallel job.

SLURM assigns a unique jobid (integer number) to each job when it is submitted. This jobid is
returned at submission time or can be obtained from the squeue command.

The scancel command is used to abort a job or job step that is running or waiting for execution.

The scontrol command is mainly used by cluster administrators to view or modify the configuration
of the SLURM system but it also offers the users the possibility to control their jobs (e.g. to hold and
release a pending job).

The Table below lists basic user activities for job submission and cancellation and the
corresponding SLURM commands.

User activities for job submission and cancellation (user supplied information is given in italics)

User activity SLURM command

Submit a job script for (later) execution sbatch job-script

Allocate a set of nodes for interactive use salloc –nodes=N

Launch a parallel task (e.g. program, command, or script)
within allocated resources
by sbatch (i.e. within a job script) or salloc

srun task

Allocate a set of nodes and launch a parallel task directly srun –nodes=N task

Abort a job that is running or waiting for execution scancel jobid

Job submission and cancellation:

User activity SLURM command

Abort all jobs of a user scancel –user=username
or generally
scancel –user=$USER

Put a job on hold (i.e. pause waiting) and Release a job
from hold
(These related commands are rarely used in standard
operation.)

scontrol hold jobid
scontrol release jobid

The major command line options that are used for sbatch and salloc are listed in the Table below.
These options can also be specified for srun , if srun is not used in the context of nodes previously
allocated via sbatch or salloc .

Major sbatch and salloc options

Specification Option Comments

Number of nodes requested –nodes=N

Number of tasks to invoke on each
node

–tasks-per-node=n Can be used to specify the number of
cores to use per node, e.g. to avoid
hyper-threading. (If option is omitted,
all cores and hyperthreads are used;
Hint: using hyperthreads is not always
advantageous.)

Partition –partition= partitionname

Job time limit –time=time-limit time-limit may be given as minutes or
in hh:mm:ss or d-hh:mm:ss format (d
means number of days)

Output file –output=out Location of stdout redirection

For the sbatch command these options may also be specified directly in the job script using a
pseudo comment directive starting with #SBATCH as a prefix. The directives must precede any
executable command in the batch script:

A complete list of parameters can be retrieved from the man pages for sbatch , salloc , or srun , e.g.
via

 #!/bin/bash
 #SBATCH --partition=std
 #SBATCH --nodes=2
 #SBATCH --tasks-per-node=16
 #SBATCH --time=00:10:00
 ...
 srun ./helloParallelWorld

https://en.wikipedia.org/wiki/Hyper-threading

There are four commands for monitoring job and system information:

sinfo
shows current information about nodes and partitions for a system managed by
SLURM. Command line options can be used to filter, sort, and format the output in a
variety of ways. By default it essentially shows for each partition if it is available and
how many nodes and which nodes in the partition are allocated or idle (or are
possibly in another state like down or drain, i.e. not available for some time). This is
useful for the user e.g. to decide in which partition to run a job. The number of
allocated and idle nodes indicates the actual utilization of the cluster.

squeue
shows current information about jobs in the SLURM scheduling queue. Command line
options can be used to filter, sort, and format the output in a variety of ways. By
default it lists all pending jobs, sorted descending by their priority, followed by all
running jobs, sorted descending by their priority. The major job states are:

R for Running
PD for Pending
CD for Completed
F for Failed
CA for Cancelled

The TIME column shows for running jobs their execution time so far (or 0:00 for
pending jobs).
The NODELIST (REASON) column shows either on which nodes a job is running or why
the job is pending. A job is pending for two main reasons:

it is still waiting for resources to become scheduled, shown as (Resources),
its priority is still not sufficient for it to become executed, shown as (Priority),
i.e. there are other jobs with a higher priority pending in the queue.

The position of a pending job in the queue indicates how many jobs are executed
before and after it. The squeue command is the main way to monitor a job and can
e.g. also be used to get the information about the expected starting time of a job
(see Table below).

sstat
is mainly used to display various status information of a running job taken as a
snapshot. The information relates to CPU, task, node, Resident Set Size (RSS), and
virtual memory (VM), etc.

scontrol
is mainly used by cluster administrators to view or modify the configuration of the
SLURM system, but it also offers users the possibility to get some information about
the cluster configuration (e.g. about partitions, nodes, and jobs).

The Table below lists basic user activities for job and system monitoring and the corresponding
SLURM commands.

 man sbatch

Monitoring job and system information:

User activity SLURM command

View information about currently available nodes and
partitions. The state of a partition may be UP , DOWN , or
INACTIVE . If the state is INACTIVE , no new submissions are

allowed to the partition.

sinfo [–partition=partitionname]

View summary about currently available nodes and
partitions. The NODES (A/I/O/T) column contains
corresponding number of nodes being allocated, idle, in
some other state and the total of the three numbers.

sinfo -s

Check the state of all jobs. squeue

Check the state of all own jobs. squeue –user=$USER

Check the state of a single job. squeue -j jobid

Check the expected starting time of a pending job. squeue –start -j jobid

Display status information of a running job (e.g. average
CPU time, average Virtual Memory (VM) usage – see sstat
–helpformat and man sstat for information on more
options).

sstat –format=AveCPU, AveVMSize -j jobid

View SLURM configuration information for a partition
cluster node (e.g. associated nodes).

scontrol show partition partitionname

View SLURM configuration information for a cluster node. scontrol show node nodename

View detailed job information. scontrol show job jobid

There are two commands for retrieving accounting information:

sacct
shows accounting information for jobs and job steps in the SLURM job accounting log
or SLURM database. For active jobs the accounting information is accessed via the
job accounting log file. For completed jobs it is accessed via the log data saved in
the SLURM database. Command line options can be used to filter, sort, and format
the output in a variety of ways. Columns for jobid, jobname, partition, account,
allocated CPUs, state, and exit code are shown by default for each of the user’s jobs
eligible after midnight of the current day.

sacctmgr
is mainly used by cluster administrators to view or modify the SLURM account
information, but it also offers users the possibility to get some information about
their account. The account information is maintained within the SLURM database.
Command line options can be used to filter, sort, and format the output in a variety
of ways.
The Table below lists basic user activities for retrieving accounting information and
the corresponding SLURM commands.

Retrieving accounting information:

User Activity SLURM Command

View job account information for a specific job. sacct -j jobid

View all job information from a specific start date (given as
yyyy-mm-dd).

sacct -S startdate -u $USER

View execution time for (completed) job (formatted as
days-hh:mm:ss, cumulated over job steps, and without any
header).

sacct -n -X -P -o Elapsed -j jobid

Below an example script for a SLURM batch job – in the sense of a hello world program – is given.
The job is suited to be run in the Phoenix HPC cluster at the Gauß-IT-Zentrum. For other cluster
systems some appropriate adjustments will probably be necessary.

The job script file above can be stored e.g. in $HOME/hello_world.sh ($HOME is mapped to the user’s
home directory).

The job is submitted to SLURM’s batch queue using the default value for partition (scontrol show
partitions (also see above) can be used to show that information):

Submitting a batch job:

#!/bin/bash
 # Do not forget to select a proper partition if the default
 # one is no fit for the job! You can do that either in the sbatch
 # command line or here with the other settings.
#SBATCH --partition=standard
 # Number of nodes used:
#SBATCH --nodes=2
 # Wall clock limit:
#SBATCH --time=12:00:00
 # Name of the job:
#SBATCH --job-name=nearest
 # Number of tasks (cores) per node:
#SBATCH --ntasks-per-node=20

 # If needed, set your working environment here.
working_dir=~
cd $working_dir

 # Load environment modules for your application here.
module load comp/gcc/6.3.0
module load mpi/openmpi/2.1.0/gcc

 # Execute the application.
mpiexec -np 40 ./test/mpinearest

[exampleusername@node001 14:48:33]~$ sbatch $HOME/hello_world.sh
Submitted batch job 123456

The start time can be selected via –begin , for example::

More information can be found via man sbatch . All parameters shown there can be included in the
jobscript via #SBATCH .

The output of sbatch will contain the jobid, like 123456 in this example. During execution the
output of the job is written to a file, named slurm-123456.out . If there had been errors (i.e. any
output to the stderrstream) a corresponding file named slurm-123456.err would have been created.

The required ID can be viewed via the general command squeue or the user specific command
squeue -u $USER .

If you want to delete all jobs of a user:

How to change a node status (root only):

This command will exclude the node from the list of available nodes. This ensures that no more
jobs can be submitted to this node, allowing it to be used for testing etc.

This reverses the previous command and returns the node back to the list of available nodes.
Executing this command might also be necessary if a node crash caused a ramovel of a node from
the batch system.

Assume you have submitted a job as follows:

--begin=16:00
--begin=now+1hour
--begin=now+60 (seconds by default)
--begin=2010-01-20T12:34:00

Cancelling a batch job:

scancel <jobid>

scancel –u <username>

scontrol update nodename=node[005-008] state=drain reason=”RMA”

scontrol update nodename=node[005-008] state=idle

Interactive jobs (intermediate difficulty):
Method one:

sbatch beispiel.job
Submitted batch job 1256

Let the corresponding jobfile be the following:

In this case, the command squeue -l will show you which node the job is currently running on. For
example:

You can then log onto that node via ssh node282 and start a new shell via screen (please follow the
link for further information). The program can then be started in this new shell.

Once you are done, you can exit the shell via:

You can start as many shells as you like. The command screen -r will show a list of all
shells (if it is only one, you will instead return to said shell).
You can access a shell running in the background via screen -r <shellnummer> .
You can quit a shell by pressing the key-combination CTRL+C and typing in exit .

Another way to use the allocated nodes is via the salloc command (see method two below).

Interactive sessions under control of the batch system can be created via salloc . salloc differs from
sbatch by the fact that resources are initially only reserved (i.e. allocated) without executing a job
script. Also, the session is running on the node on which salloc was invoked (but not on a compute
node in contrast to submission with sbatch). This is often useful during the interactive development
of a parallel program.

A single node is reserved for interactive usage as follows:

When the resources are granted by SLURM, salloc will start a new shell on the (login or head) node
where salloc was executed. This interactive session is terminated by exiting the shell or by

beispiel.job

#!/bin/bash -l

#SBATCH --partition=standard
#SBATCH --nodes=1
#SBATCH --time=7-00:00:00
#SBATCH --job-name=towhee
#SBATCH --ntasks-per-node=1

cd ~/data_dir
sleep 168h

1256 standard towhee raskrato RUNNING 0:04 7-00:00:00 1 node282

strg a d

Method two:

[exampleusername@node001 14:48:33]~$ salloc

https://linuxize.com/post/how-to-use-linux-screen/

reaching the time limit.

An OpenMP program using N threads, for example, can be started on the allocated node as follows:

To start an interactive parallel MPI program N nodes can be allocated as follows:

The MPI Program using n=32 processes, for example, can be started on the allocated nodes as
follows:

Another way to use the allocated nodes is to use ssh to establish connections to them (see method
one above).

[exampleusername@node001 14:48:33]~$ export OMP_NUM_THREADS=N
[exampleusername@node001 14:48:33]~$ srun my-openmp-binary

[exampleusername@node001 14:48:33]~$ salloc --nodes=N

[exampleusername@node001 14:48:33]~$ mpirun -np 32 my-mpi-binary

Revision #3
Created 12 March 2024 14:09:37 by Michael Giemsa
Updated 12 March 2024 15:02:12 by Michael Giemsa

